
Object Recognition and Tracking

Object recognition in computer vision is the task of finding and identifying objects in an image or video sequence. The above with the idea of imitating the human being in the recognition of a multitude of objects in images with little effort, despite the fact that the image of the object may vary a little in different points of view, in different sizes or scale and even when they are translated or rotated.

Inventory on Shelves

0: 640x640 cheetos pink 2 chipsfueco 1 chipsjalapeno 3 chokis 2 crackets 5 cupnoodlespollo 3 doritosnacho 2 fritos 2 jumexclarificadomanzana 3 jumexdurazno 5 jumexmanzana 4 minibarritas 2 paketaxomenolanito 1 petaloservilletas 2 polvorones 2 principeblue 3 rancheritos 7 rolescanela 5 sabritasadobadas 5 sabritasoriginal 3 sanissimotostadas 3 tunyblue 3 tunygreen 3 zucaritasblue 2

Products not available

Identification Entry and Exit of Products

Cash payment detection and Box cash opening

Early detection of manufacturing defects of breakdown of machinery

Early detection of defects in production

Detection of hygienic elements in production

- Hat
- Mask
- Gloves

Detection of elements Of security

- Helmets
- Lenses
- Vests

Advantages of our Al solutions

- Security Alert
- Product verification and production control
- Avoid economic losses
- Integration with third-party frontends
- PostgreSQL database storage
- Compatible with Metadata Json
- On-premise solution & Low cost

Solution Architecture

IP cameras pointing to area

Mini-Pc JPG

Apache Web Server

Access to Local Frontend Visualization of alerts

Connectivity Mobile Broadband USB

- Send Metadata Json to Third-Party Applications (By Client API)

- PostgreSQL database Storage

Virtual Labeling of Objects

Training and Detection Cycle

The cycle of training, detection and subsequent recognition is given by the following steps:

- 1. Selection, extraction of frames and labeling of Images (labeling)
- 2. Export of tagged images
- 3. Training on Google Colab servers
- 4. File export with training results for analytics server
- 5. File import in analytics platform (Backend)
- 6. Import of photographic frame of camera connected in zone focusing object.
- 7. Execution of object detection and recognition analysis in cycles
- 8. Object alert and counting

Analytical Server (Backend)

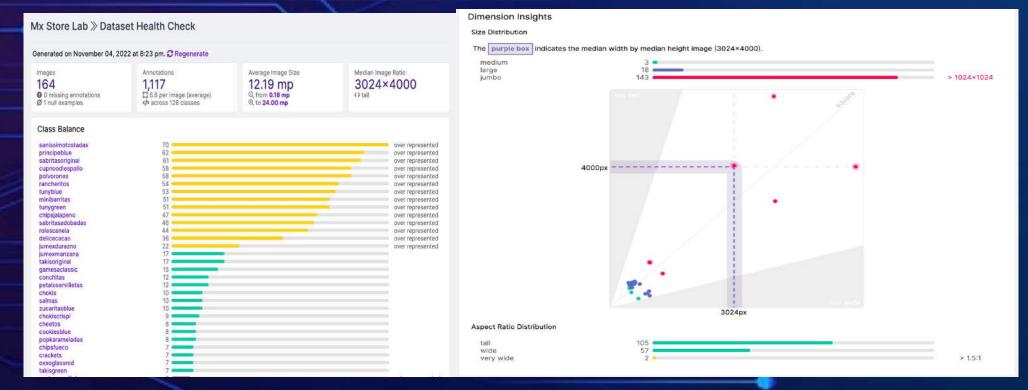
Multiphotographic training

For object detection training the following tasks are performed:

- 1. A photographic set of among 20 generated virtually from 1 video frame is used
- 2. The photo of the object should be in a view similar to the one on the shelf
- 3. Processing about 100 objects takes about 4 hours to do the labeling.
- 4. A labeling server is used that allows to select the outline of the object
- 5. A label (identifying name) is assigned to each object.
- 6. 2 groups of photo sets are extracted (labeled and without some unlabeled photos)
- 7. The unlabeled photos of the objects are used to perform the detection tests (automatic)
- 8. The photos are accompanied by a coordinate file that are uploaded to the Labeling server
- 9. The training process takes 1 hour

Cloud Server

Progressive photographic training


For this type of object detection training the following tasks are performed:

- 1. A photographic set of 1 photo captured from the frame of the video camera is used
- 2. The frame corresponds to the camera that is pointed at the shelf
- 3. The objects are processed by camera, it takes about 1 hour to make the labeling.
- 4. A labeling server is used that allows to select the outline of the object
- 5. A label (identifying name) is assigned to each object.
- 6. 2 groups of photo sets are extracted (labeled and unlabeled some photos)
- 7. The photos without labeling the objects, are used to perform the detection tests (automatic)
- 8. The photos are accompanied by a coordinate file that are uploaded to the Labeling server
- 9. The training process takes 1 hour
- 10. Advantage: shorter processing time and allows to reduce error margins (no detection)

Cloud Server

Tagged Metrics Report

Results & Tips Object recognition

Web Analytics Results

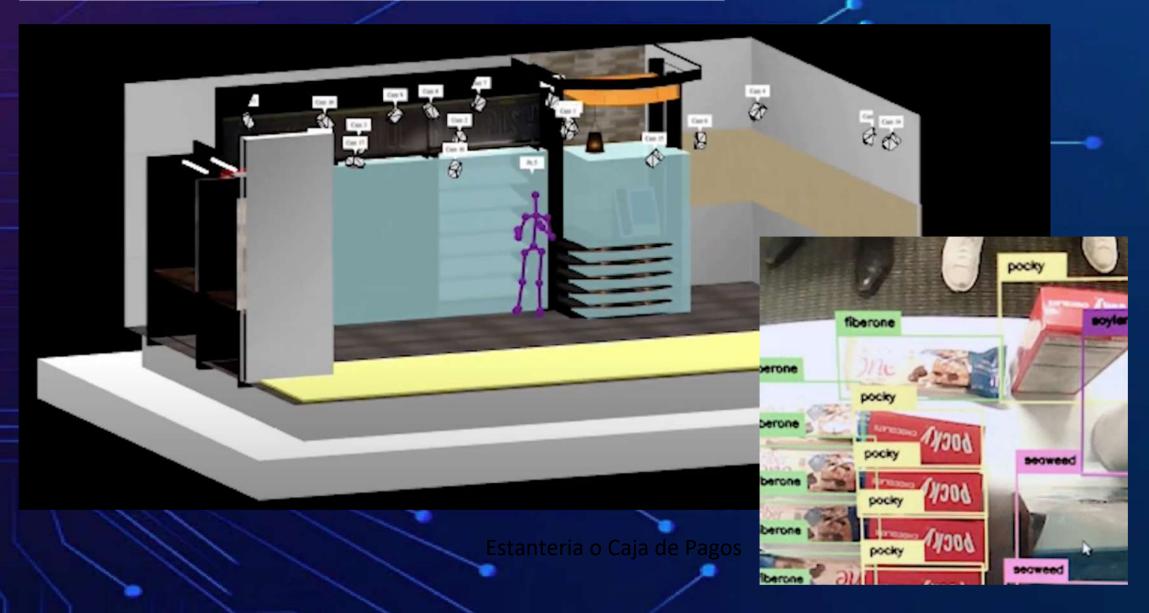
The object recognition results cycle is performed in the following steps:

- 1. Mini Analytics PC server connects to zone camera
- 2. Execution of analytics on frame captured with objects
- 3. Detection results in dataframe file
- 4. Detection, recognition and summation of objects
- 5. Export of photographic results with detected objects to Frontend Server
- 6. Export of object summation to Frontend Server
- 7. Sending Results to Third-Party Applications (By Client API)
- 8. Frontend server shows in web url html, javascript, photography and data

Web Server (Frontend)

Optimal Recommendations for Object Detection and Recognition

- A. Distance from the camera and position. The closer the camera is, the more accurate the object recognition becomes.
- B. The location of the camera is recommended in an average position with respect to the area to be monitored.
- C. If the camera is moved, an image extraction must be performed from a video frame and a label and training of the objects must be performed, before continuing with the detection and recognition.
- D. If more objects are placed, the corresponding to step step B must be performed
- E. The fast training is done with 1 frame of image which takes 1 hour
- F. When one object is in front of another (overlapping) and the camera has only one field of view that sees practically a single product, it will only detect 1 object.
- G. The more photos of each product, with different distances, the recognition also improves, although it is in the case that the camera is away from the objects or for those where the size of the object is very small.



Example of Camera Positioning

Example Location of IP Cameras

Let Us Help Power Your Digital Transformation.

Contact us at enrique.Aguayo@visyed.com